11 research outputs found

    Stabilizability of Markov jump linear systems modeling wireless networked control scenarios (extended version)

    Full text link
    The communication channels used to convey information between the components of wireless networked control systems (WNCSs) are subject to packet losses due to time-varying fading and interference. The WNCSs with missing packets can be modeled as Markov jump linear systems with one time-step delayed mode observations. While the problem of the optimal linear quadratic regulation for such systems has been already solved, we derive the necessary and sufficient conditions for stabilizability. We also show, with an example considering a communication channel model based on WirelessHART (a on-the-market wireless communication standard specifically designed for process automation), that such conditions are essential to the analysis of WNCSs where packet losses are modeled with Bernoulli random variables representing the expected value of the real random process governing the channel.Comment: Extended version of the paper accepted for the presentation at the 58th IEEE Conference on Decision and Control (CDC 2019

    State of the art of cyber-physical systems security: An automatic control perspective

    Get PDF
    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds light on how security is actually addressed when dealing with cyber-physical systems from an automatic control perspective. The provided map of 138 selected studies is defined empirically and is based on, for instance, application fields, various system components, related algorithms and models, attacks characteristics and defense strategies. It presents a powerful comparison framework for existing and future research on this hot topic, important for both industry and academia

    Railway cyber-security in the era of interconnected systems: a survey

    Get PDF
    Technological advances in the telecommunications industry have brought significant advantages in the management and performance of communication networks. The railway industry is among the ones that have benefited the most. These interconnected systems, however, have a wide area exposed to cyberattacks. This survey examines the cybersecurity aspects of railway systems by considering the standards, guidelines, frameworks, and technologies used in the industry to assess and mitigate cybersecurity risks, particularly regarding the relationship between safety and security. To do so, we dedicate specific attention to signaling, which fundamental reliance on computer and communication technologies allows us to explore better the multifaceted nature of the security of modern hyperconnected railway systems. With this in mind, we then move on to analyzing the approaches and tools that practitioners can use to facilitate the cyber security process. In detail, we present a view on cyber ranges as an enabling technology to model and emulate computer networks and attack-defense scenarios, study vulnerabilities' impact, and finally devise countermeasures. We also discuss several possible use cases strongly connected to the railway industry reality.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    WSN4QoL: wireless sensor networks for quality of life

    No full text
    Life expectancy is projected to increase significantly in the coming years. This fact has pushed the need for designing new and more pervasive healthcare systems. In this field, distributed and networked embedded systems, such as Wireless Sensor Networks (WSNs), are the most suitable technology to achieve continuous monitoring of aged people for their own safety, without affecting their daily activities. This paper proposes recent advancements in this field by introducing WSN4QoL, a Marie Curie project which involves academic and industrial partners from three EU countries. The project aims to propose new WSN-based technologies to meet the specific requirements of pervasive healthcare applications. In particular, in this paper, a Network Coding (NC) mechanism and a distributed localization solution are presented. They have been implemented on WSN testbeds to achieve efficiency in the communications and to enable indoor people tracking. Preliminary results in a real environment show good system performance that meet our expectations.Peer ReviewedPostprint (published version

    WSN4QoL: wireless sensor networks for quality of life

    No full text
    Life expectancy is projected to increase significantly in the coming years. This fact has pushed the need for designing new and more pervasive healthcare systems. In this field, distributed and networked embedded systems, such as Wireless Sensor Networks (WSNs), are the most suitable technology to achieve continuous monitoring of aged people for their own safety, without affecting their daily activities. This paper proposes recent advancements in this field by introducing WSN4QoL, a Marie Curie project which involves academic and industrial partners from three EU countries. The project aims to propose new WSN-based technologies to meet the specific requirements of pervasive healthcare applications. In particular, in this paper, a Network Coding (NC) mechanism and a distributed localization solution are presented. They have been implemented on WSN testbeds to achieve efficiency in the communications and to enable indoor people tracking. Preliminary results in a real environment show good system performance that meet our expectations.Peer Reviewe

    Teaching Stratego to Play Ball : Optimal Synthesis for Continuous Space MDPs

    Get PDF
    Uppaal Stratego facilitates optimization of quantitative measures on complex stochastic timed systems. In this paper we propose alternatives to the optimization algorithms of Uppaal Stratego, demonstrating that a significant improvement can be achieved in terms of convergence tendencies. In particular, we propose two online learning algorithms, using online partition refinement techniques, and argue for its theoretical convergence. We have implemented the proposed algorithms in Uppaal Stratego and support our claims with experimentson a range of models. We also provide the core algorithms as an Open Source library under the permissive LGPL license
    corecore